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Abstract: Moiré  patterns  in  physics  are  interference  fringes  produced  when  a  periodic  template  is  stacked  on  another  similar
one with  different  displacement  and twist  angles.  The phonon in  two-dimensional  (2D)  material  affected by  moiré  patterns  in
the lattice shows various novel physical phenomena, such as frequency shift, different linewidth, and mediation to the supercon-
ductivity.  This  review  gives  a  brief  overview  of  phonons  in  2D  moiré  superlattice.  First,  we  introduce  the  theory  of  the  moiré
phonon modes based on a continuum approach using the elastic  theory and discuss the effect  of  the moiré pattern on phon-
ons in 2D materials such as graphene and MoS2. Then, we discuss the electron–phonon coupling (EPC) modulated by moiré pat-
terns, which can be detected by the spectroscopy methods. Furthermore, the phonon-mediated unconventional superconductiv-
ity in 2D moiré superlattice is introduced. The theory of phonon-mediated superconductivity in moiré superlattice sets up a gen-
eral framework, which promises to predict the response of superconductivity to various perturbations, such as disorder, magnet-
ic field, and electric displacement field.
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 1.  Introduction

Moiré  pattern  refers  to  a  geometrical  design  produced
when a set  of  curved or  straight lines is  superposed onto an-
other  set,  resembling  water  with  ripples,  which  is  the  French
meaning  for  “moiré”,  as  shown  in Fig.  1(a)[1].  In  physics,  the
moiré pattern is a kind of novel phenomenon for various ma-
terials especially for two-dimensional (2D) materials, which oc-
curs  when  the  angle  or  lattice  parameter  of  the  2D  materials
mismatch that of another layer[2, 3]. The moiré pattern forms a
larger periodic unit than the original one, called moiré superlat-
tice,  which  has  been  used  to  engineer  the  optical  properties
or electronic structure of 2D materials[4] and generate a series
of  novel  phenomena.  For  example,  replica  Dirac  cones  and
Van  Hove  singularities  appear  in  twisted  bilayer  graphene
(tBLG)[5, 6] and  superconductivity  and  Mott  insulators  can  be
observed[7].  Interlayer  excitons  are  formed  in  moiré  superlat-
tices generating new optical  selection rules,  resonant energy,
dynamics,  and  diffusion  properties  which  can  be  controlled
via  the  twist  angle[8−11].  Intriguingly,  the  moiré  pattern  intro-
duces  periodic  potential  which  affects  not  only  the  electron-
ic  structure  but  also  the  properties  of  phonons.  In  2008,  Yan
et  al.  used  density-functional  perturbation  theory  to  calcu-
late phonon dispersions in tBLG, twisted monolayer, and trilay-
er  graphene  (tMLG  and  tTLG)[12].  The  phonon  modes  of  the
bottom layer and the top layer are coupled to form layer-asym-
metric  and  -symmetric  modes  with  the  bilayer  graphite’s  AB
stacking  (Bernal  stacking).  The  optical  phonon E2g mode  at  Γ
was  found  to  split  in  twist  graphene[12, 13].  The  relation

between  phonon  modes  and  twist  angles  was  also  observed
in graphene-hexagonal boron nitride (hBN) heterojunction by
Raman  spectroscopy  to  characterize  the  rotational  order  of
the van der Waals heterostructures[14].
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It  was  reported  that  the  moiré  interlayer  potential  can
fold  the  superlattice  zone  and  cause  miniband  generation  in
the  spectrum  of  phonons  in  twist  2D  materials[15−18].  The
concept  of  moiré  phonons  was  introduced  in  twisted  bilayer
MoS2 (tBLM)[19] in 2018, where the lattice structures of crystallo-
graphic superlattices and moiré superlattices were defined to
analyze  the  phonon  folding  effect  in  twist  bilayer  2D  materi-
als.  The  vectors  in  the  upper  and  lower  monolayers  are
defined as  and , where ,  and ,  are
the  lattice  basis  of  the  top  layer  and  the  bottom  layer,  res-
pectively,  and  (m,n)  is  a  pair  of  coprime  numbers.  When  the
twist  angle θ makes  the  period  of  the  upper  monolayer  and
that  of  the  lower  monolayer  just  match,  the  crystallographic
superlattice  can  be  defined  with  the  fundamental  vectors:

 and  shown  in Fig.  1(b)  as  a
green parallelogram,  where (m,n)  =  (5,7).  In  addition,  there  is
a  moiré  period  potential  in  twist  bilayer  2D  materials  and
fundamental  vectors  of  moiré  superlattice  can  be  defined  by
lattice  vectors  and ,  and  the  lattice  constant  is

 shown  in Fig.  1(b)  as  a  red  parallelogram.
The moiré superlattice is only relevant for twist angle θ. The re-
ciprocal lattice is defined according to the crystallographic su-
perlattice  and  moiré  superlattice  basis  vectors  as  shown  in
Fig.  1(c),  where  we  can  obtain  the  Brillouin  zone.  There  is  a
folding  effect  of  the  Brillouin  zone  in  the  superlattice,  and
phonons  are  modulated.  The  moiré  phonons  are additional
phonons modulated by moiré superlattices, rather than phon-
ons associated with crystallographic superlattices. Moiré phon-
ons  have  various  unique  properties.  The  moiré  phonons  in
tBLM  observed  by  Raman  spectra  show  some  characteristics
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such as θ-dependent frequency, narrow linewidth, and weak in-
tensity[19].  The  effects  of  the  moiré  superlattice  structure  on
the in-plane acoustic moiré phonon spectrum in tBLG were in-
vestigated  and  it  was  found  that  only  in-plane  asymmetric
modes  are  influenced  by  moiré  interlayer  potential[20]. Be-
sides,  a  low-energy  continuum  mode  for  moiré  phonons
was  promoted,  which  describes  phonon  renormalization  in
moiré superlattice well and is agree with the experimental res-
ults[21].

Specifically,  optical  phonon  moiré  modes  were  shown
fairly  coupled to  the flat  bands  strongly,  which makes  an im-
portant  impact  on  the  physics  of  2D  materials.  For  example,
in  2018,  phonon-mediated  superconductivity  based  on  elec-
tron–phonon coupling (EPC) was analyzed theoretically and it
is  found  that  phonons  give  rise  to  electron–electron  attract-
ive  interactions  in  superconducting  pairing[22].  This  phonon-
mediated  electron–electron  attraction  can  theoretically  lead
to  the  superconducting  enhancement  in  the  moiré  superlat-
tice[23] and  the  correlation  between  experimentally  observed
robust superconductivity and EPC has been theoretically ana-
lyzed[24]. For the research on the thermoelectricity of tBLGs, Ra-
man  spectra  were  used  to  reflect  various  twisted  angles  and
the  Seebeck  coefficient  exhibits  twist  angle  dependence  due
to the hybridization of electronic and phononic bands of two
graphene  layers[25, 26].  These  studies  provide  references  for
the design of rotation-tunable electronic devices.

In  this  review,  the  effective  continuum  theory  is  intro-
duced  to  calculate  relaxed  lattice  structure  and  moiré  phon-
on  dispersion  can  be  obtained.  Furthermore,  in  2D  materials,
we  take  tBLGs  and  tBLMs  as  examples  to  discuss  the  moiré
phonon reflected by Raman spectra, and next, the renormaliza-
tion of moiré phonons depending on the change in moiré pat-

tern  is  shown.  Then,  electron–phonon  and  exciton–phonon
coupling and the related thermoelectricity in the moiré super-
lattice are shown. In addition, electron–phonon interaction de-
pending  on  vibrational  and  electronic  structures  in  the  lat-
tice can be modulated by moiré patterns leading to supercon-
ductivity.  The  comprehension  of  moiré  phonons  is  deep  and
this  is  expected  to  carve  out  a  new  path  to  the  quantum
devices of 2D materials.

 2.  Moiré phonons in 2D materials

Twisted  multilayer  superlattices  can  produce  moiré  pat-
terns and create moiré phonons by periodic interlayer interac-
tion potentials. The lattice symmetry in moiré patterns is modi-
fied  by  different  interlayer  vibration  modes.  Moiré  interlayer
potential  only  influences  the  in-plane  asymmetric  modes  in
AB-stacked  tBLG,  where  the  original  linear  phonon  disper-
sion is  broken down into minibands separated by gaps while
the in-plane symmetric modes with their linear dispersion are
almost  not  influenced.  In  tBLMs,  the  angle-dependent  fre-
quency of  moiré  phonons can probe the phonon dispersions
in  monolayer  constituents  due  to  the  weak  interlayer  coup-
ling.  Besides,  phonon  spectra  renormalized  are  also  found  in
reconstructed  MoS2 moiré  superlattices.  In  this  section,  we
will  introduce  the  theoretical  model  of  moiré  lattice  in  twis-
ted  bilayer  lattices,  moiré  phonon  spectrum  in  tBLGs  or
tBLMs, and phonon renormalization.

 2.1.  Moiré phonons in tBLMs

The first experimental observation of moiré phonons was
in  tBLMs[19].  Under  the  effect  of  the  periodic  potential  in
moiré  superlattice,  the  moiré  phonons  of  the  MoS2 composi-
tion  show  unique  properties,  which  can  be  detected  by  Ra-

 

Fig. 1. (Color online) (a) Moiré pattern obtained by the overlapping of two similar fringes with different displacement and twist angles[27]. (b) Crys-
tallographic superlattice and moiré superlattice in (5,7)-tBLM with θ = 10.99°. The green solid parallelogram represents the crystallographic super-
lattice unit cell  and the red dashed parallelogram represents the moiré superlattice unit cell.  (c)  The reciprocal lattice of (5,7)-tBLM. The green
and red regular hexagons correspond to the Wigner-Seitz primitive cells of the crystallographic superlattice and moiré superlattice, and the or-
ange and blue hexagons represent the first Brillouin zone of the bottom and top MoS2, respectively. Reproduced with permission from Ref. [19].
Copyright 2018, ACS Publications.
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man spectroscopy. These Raman modes related to moiré phon-
ons  correspond  to  zone-center  phonons  in  tBLMs,  which  are
folded  from  the  off-center  phonons  in  monolayer  MoS2.
Figs.  2(a)  and 2(b)  show  the  Raman  spectra  of  tBLMs.  Com-
pared  to  monolayer  MoS2,  in  the  Raman  spectra  of  3R-
stacked  BLM  (twist  angle ),  the  Raman  modes  associ-
ated  with  the  second-order  Raman  scattering  of  the  longi-
tudinal  acoustic  (LA),  longitudinal  optical  (LO),  transverse
acoustic (TA),  transverse optical (TO),  and out-of-plane acous-
tic  (ZA)  phonons  at  K  and  M  points  of  Brillouin  zones  were
observed.  These  modes  have  been  observed  in  other  tBLMs,
independent  of ,  as  shown  by  the  crosses.  There  are  six

-dependent  Raman  modes  in  the  range  of  50−365  cm−1,
which  are  assigned  to  the  moiré  phonon  mode  associated
with the (TO2), (LO1), (TO1),  FLA, FZA, and FTA bran-
ches  formed  by  the  folding  of  phonons  related  to (TO2),

(LO1), (TO1),  LA,  ZA,  and  TA  in  monolayer  MoS2.  In  addi-
tion,  a  weak -dependent  moiré  phonon  mode  ( )  can
be  observed  on  the  high-wavenumber  side  of  each  peak
(~410 cm−1).  The  Raman shift  of  the  moiré  phonons  depend-
ing on twist angle  and the size of moiré reciprocal lattice vec-
tor  are extracted in Figs. 2(c) and 2(d), respectively. The Ra-
man  scattering  peaks  corresponding  to  these  moiré  phon-
ons share several common features, such as -dependent fre-
quency,  narrow linewidth,  and weak intensity,  so  it  is  easy  to
distinguish the moiré phonons from other phonon modes.
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The  peak  position  of  mode  is  sensitive  to  the  and
the  function  of  the  peak  position  of  mode  versus  is  V-
shaped.  While  the  peak  position  of  mode  in  tBLMs  does
not show that trend (Fig. 2(e)). It is because there is a perturba-
tion  in  the  interlayer  coupling  introduced  by  the  periodic
moiré  potential  in  tBLMs.  According  to  the  relation  between

 and  dependent  basic  vectors  of  moiré  reciprocal  lattices
,  the  dispersions  along  Γ−M  and  Γ−K  direc-
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tions  can  be  transformed  to  phonon  frequencies  varying
with  shown  in Fig.  2(f).  It  is  found  that  when  is  over
~0.6  Å−1,  the  changing  trend  of  the  Raman  shift  of  mode
obtained  experimentally  resembles  that  of  mode  obtained
theoretically,  while  when  is  below  ~0.6  Å−1 the  trends  do
not  match.  Considering  the  peak  position  of  mode  in  the
monolayer  is  lower  than  the  calculated  result  at  Γ,  the  actual
phonon  dispersion  is  supposed  to  decrease  toward  Γ  more
sharply  than  the  interpolated  phonon  dispersion.  The  phon-
on  dispersions  of  the -related  branch  in  the  monolayer
MoS2 can be mapped from the -dependent peak position of

 in tBLMs by changing the twist angle.

θ

θ

θ

Reconstructed moiré superlattices affect the renormaliza-
tion of moiré phonons under small angle changes. The phon-
on  spectra  evolve  rapidly  owing  to  the  ultra-strong  coupling
between  different  phonon  modes  and  atomic  reconstruc-
tions  of  the  moiré  pattern  in  a  range  of  small  twist  angles .
Quan et  al.  calculated  the  evolution  of  moiré  phonon  modes
by  a  low-energy  continuum  model,  which  agrees  well  with
the  experimentally  observed  lattice  reconstruction[21].  The
low energy continuum model method proposed by MacDon-
ald  and  Bistritzer[6, 28] is  employed  to  calculate  the  electron
and  phononic  systems  of  the  moiré  superlattice.  The  model
results  in  a  total  of  126  modes,  and  18  moiré  reciprocal  lat-
tice  modes  are  folded  and  vary  with .  The  frequencies  of
the calculated mode are shown in Figs.  3(a)  and 3(b).  In both
rigid  and  relaxed  systems,  the  layer  breathing  (LB)  mode  has
only  a  weak  twist  angle  dependence  (Fig.  3(b)).  It  can  be
recognized  that  the  LB  modes  in  both  cases  are  similar  by
comparing  the  calculated  results  without  (Fig.  3(a))  and  with
(Fig.  3(b))  lattice  relaxation.  The  calculation  and  measure-
ment of the LB patterns are perfectly matched at all . Further-
more,  at  small  twist  angles,  the  lattice  reconstruction  results
in a degenerate S-mode frequency shift and matches the meas-
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Fig. 2. (Color online) Raman spectra of tBLMs and monolayer MoS2. The region of (a) is 50−365 cm−1 and (b) is 370–425 cm−1. Raman modes in vari-
ous phonon branches are labeled by different  colors  and symbols.  (c,  d)  The experimental  and calculated frequencies  of  moiré  phonons vary
with  and . The solid lines and the scatter symbols are theoretical and experimental results, respectively. (e, f) The peak position of  mode
vary with  and . The peak position of -related branch of the monolayer MoS2 (pink square) and various stacked BLMs (crossed circles) are
also shown in (e).  In (f),  the theoretical  phonon dispersion of -  related branch along the Γ–M and Γ–K directions in the monolayer MoS2 are
shown as gray lines and the phonon dispersion of - related branch of the monolayer MoS2 along  is shown as a dashed line. The stars are the ex-
perimental peak position of  in tBLMs. Reproduced with permission from Ref. [19]. Copyright 2018, ACS Publications.
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urements.  This  model  theoretically  links  the  reconstructed
moiré  superlattices  to  phonon  renormalization  and  pro-
motes a unified and comprehensive unified understanding of
the electrical and optical properties and structure of moiré su-
perlattices.

 2.2.  Moiré phonons in tBLGs

GGGM
i

A  generally  effective  continuum  theory  has  been  pro-
posed  to  describe  moiré  phonons  in  tBLGs[20].  Firstly,  the  lat-
tice  geometry  is  introduced  to  describe  the  change  rule  of
the  displacement  vector  of  the  lattice.  Based  on  AB  stacked
bilayer  graphene,  the  stacking  geometry  is  specified  by
the  rotation  angle  of  layer  2  relative  to  layer  1  as  shown  in
Figs.  4(a)  and 4(b),  where  the  first  Brillouin  zone  defined  by

, i.e. the moiré reciprocal lattice vectors.  Under small-angle
rotations,  long-period  moiré  beating  modes  are  generated

due to  the  mismatch of  the  lattice  periods,  where  the  spatial
period can be estimated.

ω uuu(l)(rrr)
rrr l

δuuu−

Our  goal  is  to  get  phonon  modes  and  phonon  fre-
quency .  is defined as a displacement vector of the lat-
tice with position  and layer number , and perturbational ex-
citation  is  introduced  to  describe  phonon  modes.  The
Euler-Lagrange  equation  is  given  to  obtain  the  optimized  re-
laxed state solution minimizing the sum of the interlayer bind-
ing energy and the elastic energy of tBLG[20]
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θFig. 3. (Color online) (a, b) Calculated the low-energy evolution of phonon modes developed twist angle  at Γ. Color bars based on optical activ-
ity project the phonon eigenmodes onto the central Γ point. Optically inactive modes are shown by grey lines in (a) entirely originating at neigh-
boring Γ points. Reproduced with permission from Ref. [21]. Copyright 2021, Springer Nature.
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Fig. 4. (Color online) (a) The moiré pattern as seen in the tBLG. The first Brillouin zones of layers 1 and 2 are shown as two large hexagons, and
small hexagons are moiré Brillouin zones of the tBLG. (b) Schematic illustrating the coupling of interlayer from the initial  in layer 1 (given by as

) to the three  points in layer 2 in an undistorted tBLG, where  is a two-dimensional Bloch wave vector. Reproduced with permission from

Ref.  [30].  Copyright  2020,  American Physical  Society.  (c)  Phonon dispersion in  the inner  asymmetric  mode ( )  under  different  twist  angles .
(d) The gap width between the third and second branches of the phonon of  mode as a function of . The blue dashed line indicates the linear
dependence on . (e) Group velocities of the second and first phonon modes dependent on . The velocities of transverse ( ) and longitudin-
al ( ) phonons in monolayer graphene are represented by horizontal dashed lines. Reproduced with permission from Ref. [20]. Copyright 2018,
American Physical Society.
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where ,  is  the strain tensor,  and  are typic-
al values of Lamé factor of graphene[29],  is the interlayer in-
teracting potential,  and  are respectively primitive and re-
ciprocal lattice vectors of layer i, a is lattice constant,  is the
l component of , and  is the density of materials. The phon-
on dispersion with twist angles  calculated by the Euler-Lag-
range  equation  is  shown  in Fig.  4(c),  in  which  the  in-plane
acoustic phonon modes of graphene are renormalized and dis-
persions  show  superlattice  minibands.  There  is  a  gap
between the lowest  two bands and the rest  of  the spectra  in
the  lower  twist  angles  as  shown  in Fig.  4(c)[20].  The  full  gap
opens  when  the  twist  angle ,  where  the  critical  angle

.  The  spectral  gaps  are  also  found  between  the
ninth, eighth, sixth, and fifth modes when  takes the minim-
um  value.  In Fig.  4(d),  the  gap  width  between  the  third  and
the second branches is plotted as a function of . As the  in-
creases,  the  gap  size  is  converged  and  approaches  a  con-
stant  value.  The  phonon  group  velocity  dependent  on  for
the  first  and  second  modes  is  shown  in Fig.  4(e).  At  large

,  the  phonon  group  velocities  become  the  velocities  of  the
transverse  and  longitudinal  phonon  modes  of  monolayer
graphene.  In  the  process  of  decreasing  the  angle,  due  to  the
formation of miniband, the phonon velocity decreases and ap-
proaches a constant value at a low angle limit. To explain it, a
simple  effective  triangular  lattice  model  was  promoted  and
chemical bonds are seen as domain walls.  The length change
of  the  bonds  and  the  total  energy  of  the  bonds  were  calcu-
lated.  By  this  model,  the  phonon  dispersion  calculated  is
agree with Fig. 4(c). The important principle is that the poten-
tial  energy  of  a  bond  (a  domain  wall)  is  proportional  to  its
length,  but  not  to  the  squared  length.  Besides,  it  is  also
found  that  in-plane  phonon  symmetric  modes  are  hardly  af-
fected  by  the  twist  angle  while  in-plane  phonon  asymmetric
modes  are  affected  and  minibands  are  formed.  On  the  other
hand,  the minibands for  phonons out-of-plane are  not  found
and  the  density  of  states  (DOS)  of  those  remain  unchanged.
These  results  are  expected  to  affect  the  thermal  conductivity
and phonon-related thermal phenomena in tBLGs.

 3.  Electron–phonon interaction in moiré
superlattices

The new structure and period in the 2D van der Waals het-
erojunction  will  affect  the  phonons,  electron–phonon,  ex-
citon–phonon, and phonon–phonon interactions of the 2D ma-
terial that constitutes the heterojunctions and the heterojunc-
tion itself, exhibiting new characteristics. Fig. 5 shows the elec-
tron–phonon  interaction  in  moiré  superlattices,  where  the
EPC  is  affected  by  the  moiré  patterns.  Studying  these  many-
body effects is important to understand the fundamental phys-
ical  phenomena  and  explore  potential  applications  in  the
moiré  superlattice,  such  as  superconductivity,  super-Cou-
lombic  long-range  dipolar  interactions,  and  quantum  emis-
sion[31].  Here,  we  discuss  the  moiré  electron–phonon  interac-
tion  in  theory  and  sum  up  the  recent  studies  including  ex-
citon–phonon coupling and thermoelectricity in moiré super-

lattice.  Such  studies  of  phonon  coupling  are  likely  to  pave
the  way  for  the  exploration  of  new  quantum  phenomena  in
moiré patterns.

 3.1.  Electron–phonon interaction in moiré

superlattices

gn,qqq

ḡn

The  electron–phonon  interaction  in  the  moiré  superlat-
tice  is  caused  by  the  intralayer  part  and  the  interlayer  part,
where  the  former  is  from  the  strain-induced  pseudo-vector
field,  and  the  latter  is  from  the  change  of  the  moiré  pattern.
In tBLG,  the effect  of  moiré superlattice leads to the different
interlayer  asymmetric  displacement  vectors  and  changes  the
interlayer Hamiltonian. Next, the interlayer part of EPC is ana-
lyzed  with  interlayer  Hamiltonian  and  Bloch  bases  at  differ-
ent layers. The intralayer Hamiltonian changes because of the
shift of the pseudovector and the intralayer part of EPC is cal-
culated  with  intralayer  Hamiltonian  and  Bloch  bases  at  the
same  layers.  The  interlayer  and  intralayer  EPC  strength  is
introduced  from  the  matrix  element  for  EPC.  And  the  aver-
aged  coupling  amplitude  can  be  calculated.  Considering
the total EPC in tBLG, the Hamiltonian is written as[30]
 

He-p =
√
S
∑
nαα′

∑
qqqkkkkkk′∈MBZ

(a†
n,qqq + an,−qqq)c†

α′,kkk′cα,kkk×gn,qqq (α, kkk; α′
, kkk′) , (3)

qqq
kkk α

c†
α,kkk cα,kkk

a†
n,qqq an,−qqq

gn,qqq
ḡn

where n is the mode index,  is the vector of the reciprocal su-
perlattice. S is  the  unit  area,  is  the  Bloch  vector,  is  the
band index in the first moiré Brillouin zone,  and  are re-
spectively  creation  and  annihilation  operators  of  an  electron,

 and  are respectively creation and annihilation operat-
ors  of  the  phonon,  and  represents  the  EPC  strength.  The
averaged coupling amplitude  is given by[30]
 

ḡ
n ≡


Nqqq

∑
qqq∈MBZ




∑
α=±,α′=±

»»»»»gn,qqq (α′
, KKK + qqq; α, KKK)»»»»», (4)

Nqqq qqq KKK
K

ḡn

where  is  the number of sampling points of ,  and  is  the
position  of  the  moiré  Brillouin  zone  point .  The  twist
angles-dependent  can  be  observed  in Fig.  6 where  the
blue and red curves are the interlayer and intralayer contribu-
tions,  respectively.  The  overall  coupling  amplitude  increases
as  the  twist  angle  decreases  but  the  change  of  EPC  with
angle  is  not  drastic.  The  superlattice  hybridization  is  week
and  therefore,  the  monolayer  eigenstate  with  a  single  wave
component  dominates  every  electron  and  phonon  eigen-
state. In the low-lying electronic states (composed of low k’s),

 

Fig. 5. (Color online) Illustration of the electron–phonon interaction in
moiré superlattices. The springs representing phonons and a periodic
electronic potential is on the top of the picture.
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ḡn

the  phonons  of  large  phonon  band  index n’s  (mainly  com-
posed  of  high q)  do  not  have  related  matrix  elements,  and
this is why  decay quickly.

 3.2.  Enhancement of EPC in moiré superlattices

θ

exp(−ξq/)
ξ

A  prominent  property  of  the  graphene  moiré  superlat-
tice is  the reshaped Wannier orbital,  the size of  which can be
tuned by the twist angle . The squeezing of the electron Wan-
nier orbitals results in a much larger electron–phonon interac-
tion  strength  than  that  in  pristine  monolayer  graphene[32].
The  enhanced  interaction  enables  the  scattering  rate  of  the
electron–phonon  to  exceed  the  expected  value  of  the  en-
hanced  electron  density  of  flat  bands[33].  A  toy  model  of
moiré  graphene  is  proposed[32] to  explore  the  effect  of  com-
pact  Wannier  orbitals  on  EPC.  In  the  toy  model,  the  honey-
comb  lattice  periodicity  and  symmetry  are  matched  to  a
moiré  superlattice.  The  narrow  band  of  honeycomb  lattice  is
studied  on  a  tight-binding  approach,  and  Gaussian  functions

 can model  the  compact  Wannier  orbitals,  where
 is  the  orbital  radius.  Then,  the  Hamiltonian  of  EPC  is  writ-

ten as 

Hep = − ∑
qqq,kkk,GGG,n

gqqq+GGG√
V

√
h̵ωqqq+GGGψ̂

†

kkk+qqq,n
ψ̂kkk,n (âqqq+GGG + â†

−qqq−GGG) , (5)

qqq kkk
GGG

ω

where  is  the  vector  of  the  reciprocal  superlattice,  is  the
electron momentum,  is the vector of the moiré reciprocal lat-
tice, n is the order of scattering, V is the area of the system, 

a†
qqq aqqq

ψ̂

gqqq+GGG = ge−(qqq+GGG)ξ/
GGG ≠ 

is  the  angular  frequency  of  phonons,  and  are  respect-
ively  annihilation  and  creation  operators  of  the  phonon,  is
a spinor in sublattice-valley space. The modulation of the EPC
is described by a form factor . Reciprocal lat-
tice  vector  suggests  moiré  superlattice  potential  rais-
ing  electron  Bragg  scattering,  so  Wannier  orbital  localization
is formed and EPC is enhanced.

exp(i(kkk + GGG) ⋅ rrr)

gq

Some  plane  waves  with  the  form  com-
pose  Wannier  functions  in  tBLG  suggesting  a  large  umklapp
scattering amplitude, where the reciprocal vector of moiré su-
perlattice changes electron momentum. Fig. 7(a) shows differ-
ent  electron–phonon  scattering  containing  different  umk-
lapp processes. Electron cooling and resistivity are highly sens-
itive  to  the  nature  of  electron–phonon  umklapp  scattering.
Figs. 7(b) and 7(c) show the temperature dependence of cool-
ing power and resistivity with contributions of the second-or-
der umklapp, first-order umklapp, and normal processes calcu-
lated  by  the  model  above,  which  manifests  enhanced  elec-
tron–phonon  interaction.  To  further  confirm  the  validity  of
the  toy  model,  it  is  compared  with  the  continuum  model  of
moiré  graphene. Figs.  7(d)  and 7(e)  show  the  form  factor  of
the  EPC  calculated  with  the  continuum  model  (diamond  and
disk  symbols)  and  toy  model  (gray  line).  The  law  of  form
factor  changes  with  predictedmomentum  at  different  angles
by the continuum model  in Fig.  7(d)  is  consistent  with the 
calculated  above.  The  best  fitting  results  for  the  microscopic
calculations  using  tightly  localized  Wannier  orbitals  support

 

ḡnFig.  6.  (Color  online)  EPC  strength  as  a  function  of  the  phonon  band  index n in  various  twist  angles.  Reproduced  with  permission  from
Ref. [30]. Copyright 2020, American Physical Society.

 

θ

ξ gq
exp(−ξq/) θ kkk

Fig. 7. (Color online) (a) Electron–phonon scattering in the extended Brillouin zone. The first Brillouin zone is shown as dashed hexagon marks;
the blue circles are the Fermi surface. Yellow and orange arrows represent the umklapp processes and the purple arrow represents the normal pro-
cesses. Both of them contribute to scattering. (b) Temperature dependence of the power of electron-lattice cooling for two different Wannier or-
bitals radii. (c) System resistivity and the resistivity from the sum of contributions from different phonon branches varying with the temperature
of different electron–phonon processes. (d) At twist angles  = 1.20° and 1.05°, shape factors are shown for diamond and disk respectively, calcu-
lated of the continuum model at K points from the Wannier function. With different Wannier function , the grey lines are shape factors  propor-
tional to Gaussian functions . (e) Shape factors at  = 1.05° for different electron wave numbers . Reproduced with permission from
Ref. [32]. Copyright 2021, ACS Publication.
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gq kkk
θ

gq

the Purcell-like enhancement of the electron–phonon scatter-
ing  rate  since  the  localization  of  the  Wannier  orbitals.  In
Fig.  7(e),  the changing trend of  at  different wavenumber 
is similar to that using continuum model at different . This is
because  the  charge  distribution  of  the  eigenstate  at  the  Γ
point  is  different  with  various  wavenumbers.  Therefore,  the
toy  model  is  effective  for  calculating  the  form  factor  in
tBLGs.

A′


A′
 + E

Besides, the phonon also interacts with moiré excitons in
2D van der Waals heterostructures such as MoSe2/WSe2

[34, 35],
which  can  be  reflected  by  near-resonant  photoluminescence
excitation (PLE) spectroscopy. To get near-resonant photoexcit-
ation  conditions,  photoluminescence  (PL)  spectra  need  to  be
detected  first.  The  PL  spectra  under  various  excitation  ener-
gies are shown in Fig. 8(a). The energy of emission and reson-
ance  excitation  for  moiré  exciton  is  around  1.33  and  1.36  eV,
respectively. To observe PLE and PL more intuitively, the vari-
ous excitation energies of Fig. 8(a) are given as vertical axis in
Fig.  8(b).  We can see  the  difference between excitation ener-
gies  and  emission  energy  have  two  typical  values:  24  and
48  meV,  shown  as  black  dashed  lines.  To  discuss  the  reson-
ance  features  quantitatively,  Lorentz  functions  are  used to  fit
the  spectra  (Fig.  8(c)).  The  energy  difference  of  24  meV  is
close  to  the  energy  of  phonon  modes  in  MoSe2 and  the

 phonon  modes  (~30  meV)  in  WSe2 observed  by  Ra-
man spectra, indicating that exciton–phonon coupling can ex-
plain  this  result.  The  slight  difference  between  24  meV  and
the energy of the phonon in Raman spectra is because of the
different excitation processes of the phonon in the PLE meas-
urement and Raman. For the interaction between the moiré ex-
citon and phonon, the wave function of moiré excitons is sup-
posed to expand in momentum space. In this case, the phon-
on  modes  with  large  wave  numbers  and  Γ  point  can  interact

with  moiré  exciton,  which  is  in  good  agreement  with  the
above measurements. This research reveals new physical phe-
nomena of moiré exciton and phonon coupling.

 3.3.  Thermoelectricity in moiré superlattice

S
S

T

θ

Moiré  patterns  affect  the  contribution  of  electron–phon-
on scattering to the cross-plane transport  of  electrons,  which
influences  thermoelectric  performance  in  twist  2D  materials.
The  coupling  of  the  two  graphene  layers  in  tBLGs  varies
strongly with the twist angle. For the large twist angle, the lay-
ers are essentially decoupled at low temperatures, but get ef-
fectively re-coupled at higher temperatures when the interlay-
er  phonons  drive  cross-plane  electrical  transport  through
strong electron–phonon scattering[36].  Mahapatra et al. found
a  novel  phonon-drag  effect  driving  thermopower  in  tBLG,
which  is  related  to  the  twist  angle[26].  In  thermoelectric  phe-
nomena,  the  Seebeck  coefficient  is  a  measure  of  the  mag-
nitude of  an induced thermoelectric  voltage in  response to a
temperature  difference  between  two  different  conductors  or
semiconductors.  For  the  quadratic  dispersion  relation  of  lay-
er breathing mode branch of phonons, Fig. 9(a) shows the See-
beck  coefficient  of  thermoelectric  power  with  different
twist angles depending on temperature.  varies linearly with

 at low twist angles while similar nonmonotonic thermoelec-
tric power was observed at large twist angles. When the twist
angle is  small,  the generic  electron–phonon scattering times-
cale shows weak dependence on  due to the quadratic disper-
sion  of  phonon  energy.  However,  when  the  twist  angle  is  in-
creased,  the  interlayer  electronic  tunneling  timescale  decays
rapidly and becomes slower than the scattering timescale. To
explain  further,  the  electron–phonon  scattering  from  the  hy-
bridized phonons drives the cross-plane thermoelectric trans-
port at  large twist  angles,  which results  in an unconventional

 

Fig. 8. (Color online) (a) PL spectra obtained measured from 1.356 to 1.377 eV in case of near-resonant excitation. Lorentzian functions filled are
shown as black lines. (b) 2D PLE intensity map. The excess energy at 24 and 48 meV is shown with sloping black dashed lines. (c) Lorentzian fit-
ted PLE spectra as a function of the excess energy of the PL spectra. The gray areas mean excess energy at 48 and 24 meV. Reproduced with per-
mission from Ref. [35]. Copyright 2021, ACS Publication.
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κ

phonon-drag  effect  at  the  sub-nanometer  distance.  Further-
more, Han et al. measured thermal conductivity ( ) in the sus-
pended single crystalline tBLG domains with various interlay-
er  twist  angles  via  the  optothermal  Raman  technique[25].  In
Fig.  9(b),  exhibits  an  asymmetrical  V-shaped  dependence
on  the  interlayer  twist  angle.  It  was  confirmed  that  the  en-
hancement  of  the  phonon  scattering  affects  the  in-plane
thermal conduction by further analysis of the vibrational dens-
ity of states. Besides, the angle-dependent thermoelectric prop-
erties of twisted bilayer black phosphorene (tbBP) by first-prin-
ciples calculations are reported[37]. The lattice thermal conduct-
ivities  of  the  tbBPs  are  significantly  reduced  in  comparison
with  pristine  bilayer  black  phosphorene  by  almost  an  order
of  magnitude,  especially  when  the  twist  angle  is  10.11°  and
46.92°  (Fig.  9(c)).  Such  highly  depressed  lattice  thermal  con-
ductivity  can  be  attributed  to  the  reduced  Debye  temperat-
ure  and  the  strong  anharmonic  phonon  scattering  induced
by  the  moiré  superlattices.  These  studies  provide  new  ways
to  optimize  thermoelectric  performance  by  tuning  the  moiré
superlattice in low-dimensional materials.

 4.  Phonon-mediated superconductivity in moiré
superlattices

The  unconventional  superconductivity  in  2D  superlat-
tices  has  been  reported  in  tBLGs  with  a  specific  angle  called
the  “magic  angle”[7].  By  stacking  two  graphene  layers  with  a
magic angle of  1.08° and regulating the carrier  concentration
through  the  gate  voltage  (Fig.  10(a)),  Cao et  al.  successfully
achieved  a  Mott-like  insulator  with  a  half-filling  state[7],  and

subsequently,  high-temperature  superconductivity  similar  to
that in copper oxides is exhibited at 1.7 K (Fig. 10(b)). It is the
first  time  to  achieve  superconductivity  in  pure  carbon-based
two-dimensional  materials,  which  has  important  implications
for the research of high-temperature superconductivity mech-
anisms  and  the  exploration  of  the  frontier  problems  in
strongly  correlated  electronic  materials.  Recently,  strong  EPC
has  been  found  in  tBLGs  which  spires  interest  in  phonon-
mediated  superconductivity[15, 22, 38, 39].  Superconductivity  in
tBLGs  was  experimentally  demonstrated  associated  with
moiré  patterns[23, 24].  The  study  of  the  EPC  of  different  flat-
band states in moiré graphene has important implications for
the superconducting mechanism. In addition, topological sur-
face states are also found in moiré superlattices, which can en-
hance the superconductivity.

 4.1.  Phonon-mediated superconductivity in magic-

angle graphene

There are various theoretical models to explain the super-
conductivity in moiré superlattices in magic-angle tBLGs such
as  phonon-mediated  mechanism[22],  minimal  Hubbard  mod-
el  for  electronically  driven  superconductivity[41],  two-orbital
Hubbard  model  on  an  emergent  honeycomb  lattice[42],  the
low-energy tight-binding model for the four narrow bands of
tBLG  and  so  on[43].  Here  we  focus  on  the  phonon-mediated
electron–electron attractive interaction in s-wave and d-wave
pairing  channels[22].  The  s-  and  d-  here  refer  to  the  angular
quantum numbers of electron orbitals and in superconductiv-
ity, the pairing of them represents the angular quantum num-
bers of Cooper pairs. By introducing continuum moiré Hamilto-

 

TFig. 9. (Color online) (a) Cross-plane thermoelectricity with different twist angles. The dotted lines show the linear  dependence of thermoelec-
tric power. The solid lines show the fit  of the thermoelectric power driven by phonons. Reproduced with permission from Ref.  [26].  Copyright
2020,  American Physical  Society.  (b)  The thermal  conductivity depending on twist  angles of  different temperatures.  Reproduced with permis-
sion from Ref.  [25].  Copyright  2021,  AIP  Publishing.  (c)  Calculated lattice  thermal  conductivities  of  tbBPs at  300 K  with various  twist  angles  at
300 K. Reproduced with permission from Ref. [37]. Copyright 2022, Wiley Publishing.
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nian  for  low-energy  electrons  and  the  effect  of  phonons  by
EPC  Hamiltonian.  The  phonon-mediated  interaction  Hamil-
tonian can be derived 

Hattractive = − ∫ drrr {gE [(ψ̂†
τzσyψ̂) + (ψ̂†

σxψ̂)]
+ gA [(ψ̂†

τxσxψ̂) + (ψ̂†
τyσxψ̂)]} , (6)

ψ̂ τx,y,z
σx,y,z

g

where  is  a  spinor  in  sublattice-valley  space,  and  and
 are Pauli matrices in valley space and sublattice space, re-

spectively.  The  attractive  interaction  strength  mediated  by
phonons is obtained[22]
 

gα = A
N
( Fα
h̵ωα

) h̵

M
, (7)

α A
N F

M

Δ(rrr)
Δ(rrr)

Δ(rrr)

where  represents  phonon modes  and  is  the  sample  area,
 is  the  number  of  sites  of  modes  in  a  monolayer,  is  coup-

ling constants,  and  is  the  mass  of  a  single  carbon atom.  In
addition,  the  phonon-mediated  electron-electron  interaction
Hamiltonian  is  restricted  to  the  Bardeen-Cooper-Schrieffer
(BCS) channel. In Figs. 10(c) and 10(d), s-wave and d-wave pair-
ing  in  real  space  of  tBLM  are  shown.  The  pair  amplitude 
of  s-wave concentrated near  AA regions in  the moiré pattern
and  is  layer  independent.  In  the  normal  state  of  the  flat
bands,  the  spatial  variation  of  follows  the  electron  dens-
ity  distribution.  transforms  trivially  under  all  the  point-
group  symmetries,  confirming  that  intra-sublattice  pairing  is
s-wave  pairing.  At  the  atomic  scale,  chiral  d-wave  pairing  is

Δ(rrr)realized  by  forming  nearest-neighbor  spin-singlet  Cooper
pairs  with  bond-dependent  phase  factors.  of  d-wave
shows  the  center-of-mass  motion  of  the  Cooper  pairs,  while
the  relative  motion  of  the  two  paired  electrons  has  d-wave
symmetry.  Therefore,  a  general  framework  of  superconduct-
ing  pairing  with  attractive  electron–electron  mediated  by
phonons  was  set  up  and  this  is  expected  to  be  an  important
step  towards  a  complete  quantitative  theory  of  tBLGs.  It
should be noted that,  up to now, which mechanism respons-
ible  for  the  superconductivity  in  moiré  superlattices  is  under
debate and needs further experimental verification.

 4.2.  Moiré surface states and enhanced

superconductivity

λ∗

Tc

Superconductivity  can  be  mediated  and  enhanced  by
moiré  phonons.  Van  Hove  singularities  present  in  the  moiré
surface  electronic  states  are  found[44],  which  lead to  different
DOS[23]. In the case of phonon-mediated electron–electron at-
traction,  some  of  these  Van  Hove  singularities  exhibit  a
power-law divergent DOS, termed higher-order Van Hove sin-
gularities,  where  superconductivity  is  enhanced  by  the
power-law divergent DOS. The delayed electron–phonon inter-
action  associated  with  the  power  law  can  be  revealed  by
the electron–phonon superconducting critical temperature 
with a new analytical formula for[23]
 

Tc =
Λ

I(ν)/ν [ 
λ − μ∗ − log ( εD

Λ
) + ∣ν∣ ]−/∣ν∣, (8)

 

θ

Δ(rrr)
Δ(rrr) μ

θ

Fig. 10. (Color online) (a) Schematic of the tBLG devices fabricated on SiO2/Si substrates. (b) Current–voltage curves of two devices M1 and M2
measured in graphene superlattices and at different temperatures. Resistance Rxx was measured in two devices, with  = 1.05° and 1.16°, respect-
ively. Reproduced with permission from Refs. [7, 40]. Copyright 2018, Nature. (c) Real-space map of pair amplitudes  that satisfy s-wave linear-
ized gap equations. (d) Real-space map of pair amplitudes  that satisfy d-wave linearized gap equations. In (c) and (d), chemical potential =
−0.3 meV and twist angle = 1.05°. Reproduced with permission from Ref. [22]. Copyright 2018, American Physical Society.
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 > ν > −
Λ

εD μ∗

I(ν) = (−ν − )Γ(ν)ξ(ν) ξ(ν) Γ(ν) ξ

Γ

λ∗

where  expresses  the  power-law  exponent  of  the
DOS,  is  the  high-order  Van  Hove  singularities  peak  cutoff,

 is  the  Debye  frequency,  is  the  screened  repulsion,
,  and  are  the  Riemann  func-

tion  and  function,  respectively.  Eq.  (8)  generalizes  the  BCS
formula.  The  analytical  nature  of  this  formula  shows  that
when  the  value  is  small,  the  superconductivity  is  signific-
antly enhanced compared with that of ordinary metals and or-
dinary Van Hove singularities.

U

U Tc

U Tc
λ∗ U

Over a wide range of , the strength of periodic scalar po-
tential,  the  DOS  has  a  sharp  high-order-Van  Hove  singularit-
ies-like  peak  (Fig.  11(a)),  which  means  the  power-law  diver-
ging behavior  of  the DOS still  exists  and superconductivity  is
enhanced.  In Fig.  11(b), -dependent  is  calculated  by  gap
equation  with  the  chemical  potential  held  exactly  at  the  Van
Hove  singularities.  Over  a  wide  range  of ,  is  enhanced
and  when  is  large,  the  window  of  with  enhancement  is
wide. It  is shown that the energy difference between the Van
Hove  singularities  and  the  local  maxima  or  minima  is  on  the
order  of  sub-Kelvin  even at  tens  of  megavolts  away from the
higher-order  Van  Hove  singularities.  It  means  that  the  super-
conductivity  enhancement  is  persists  and  robust  though  the
system is perturbed away from high-order Van Hove singularit-
ies.

 4.3.  Relevance between robust superconductivity and

strong EPC in graphene moiré superlattices

λ > 

Tc

Tc

Graphene  moiré  superlattice  is  a  superior  platform  to
study  superconductivity  but  robust  superconductivity  is  only
found  in  some  types  of  twist  graphene-like  tBLGs  and  tTLGs,
which raises a question on superconducting mechanism. EPC
in  graphene  moiré  superlattices  also  exhibits  similar  differ-
ences. In an atomic calculations study of the EPC of graphene
moiré superlattices and electronic structure, it can be demon-
strated  that  tBLG  and  tTLG  have  strong  EPC  (coupling
strength )  at  their  magic  angles,  while  twisted  monolay-
er-bilayer  graphene  (tMBLG)  and  twisted  double  bilayer
graphene  (tDBLG)  are  an  order  of  magnitude  weaker.  We
show the superconducting transition temperature  depend-
ing on EPC strength derived by  the  Eliashberg equation[45].  If
the dispersion of the phonon modes and the energy depend-
ence of the electronic DOS are ignored, the explicit  formula-

tion for the half-filled band can be derived as[24]
 

Tc = ∏
i

( ωiD
ωi + D

)λi/λexp (−  + λ̃
λ − μ∗

) , (9)

λi ωi

i

μ∗ =μ/(μ∑
i

ln(D/ωi + )λi/λ + )
λ̃ = ∑

i

λiD/(D + ωi)
λi ωi

Tc
Tc

where  and  are  the  EPC  strength  and  the  energy  of
the -th  phonon  mode, D is  the  half-bandwidth,

 is  the  Coulomb  pseudopoten-

tial,  is  the  mass  renormalization  constant.

The  with different  is  shown in Table  1.  Take them to Eq.
(9) and the critical temperature  can be obtained as shown in
Table  2.  The  calculated  results  for  the  half-filled  Fermi  en-
ergy  of  the  electron-  (hole-)  side  flat  bands  of  tBLG and tTLG
(tDBLG and tMBLG) agree well with the experimental observa-
tions[7, 46, 47]. These results show a correlation between experi-
mental  observations  providing  a  deeper  understanding  of
the graphene moiré superlattice.

 5.  Conclusion

Interlayer  coupling  in  twisted  bilayer  2D  materials  in-
duces  periodic  moiré  potentials  that  alter  the  lattice  vibra-
tions  of  the  monolayer  components  to  form  moiré
phonons[48]. The moiré phonons of the twisted bilayer 2D ma-
terials  can  be  used  to  map  the  phonon  dispersion  of  the
monolayer  components  by  varying  the  twist  angle.  The
strong  interaction  between  the  atomic  reconstruction  of  the
moiré pattern and various phonon modes can lead to the re-
construction  of  phonons  in  the  small  twist  angle  range,
which  can  be  observed  by  Raman  spectroscopy.  In  addition,
the  electron–phonon,  exciton–phonon,  and  photon–phonon
interactions are affected by moiré patterns, where the enhance-
ment  of  electron–phonon  interactions  can  be  observed.  EPC
is  predicted  to  mediate  superconductivity  in  moiré  superlat-
tices and achieve superconductivity enhancement.

The study of moiré phonon provides a deeper understand-
ing of  novel  physical  phenomena such as  EPC and supercon-
ductivity,  which  promotes  further  investigations  regarding
phonons  in  moiré  superlattices  such  as  the  effect  of
electron–phonon  interactions  on  metal–insulator  transitions,
magnetic  order,  and  Wigner  crystal  state  stability  in  trans-
ition metal dichalcogenides moiré materials[21]. The twist-con-

Table 1.   Electron–phonon coupling strength λi, mode-resolved. Repro-
duced with permission from Ref. [24]. Copyright 2021, American Physic-
al Society.

Condition λi (tBLG) λi (tTLG) λi (tDBLG) λi (tMBLG)

ωi = 10 meV 0.297 0.233 0.064 0.037
ωi = 167 meV 0.914 0.743 0.026 0.045
ωi = 197 meV 0.648 0.532 0.018 0.030

Table 2.   Tc and D calculated for tBLG , tTLG , tDBLG, and tMBLG. Repro-
duced with permission from Ref. [24]. Copyright 2021, American Physic-
al Society.

Parameter tBLG tTLG tDBLG tMBLG

D (meV) 0.53 0.67 3.4 6.7
Tc (μ = 0.15) (K) 3.33 3.55 0.0 0.0
Tc (μ = 0.05) (K) 3.45 3.67 10–7 10–6

 

U Tc vF/L εD
U

Tc

Fig. 11. (Color online) (a) Moiré surface state DOS with sharp higher-or-
der Van hove singularities-like peaks at C6 potential with various poten-
tial [23]. (b) Transition temperature  at  = 435 K and  = 80 K for
different  potential .  The  blue  axis  on  the  right  and  red  axis  on  the
left correspond to the , which shows broad peaks corresponding to
higher-order  Van  Hove  singularities  around  potentials.  Reproduced
with permission from Ref. [23]. Copyright 2021, American Physical Soci-
ety.
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trolled thermoelectricity in moiré superlattices raised by phon-
on  scattering  can  not  only  probe  the  interlayer  coherent
states in twisted 2D material but may trigger new thermoelec-
tric  designs[26].  Furthermore,  the  research  related  to  moiré
phonons  is  beneficial  to  further  explore  new  quantum  phe-
nomena in the moiré pattern and promote their applications.
The studies of exciton–phonon interaction and phonon polari-
ton  in  moiré  superlattices  open  the  possibility  for  novel
quantum emitters[49] in 2D semiconductor heterostructures.
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